quinta-feira, 6 de janeiro de 2011

Informatica para radiologia (parte 4)

Computador 
Denomina-se computador uma máquina capaz de variados tipos de tratamento automático de informações ou processamento de dados. Exemplos de computadores incluem o ábaco, a calculadora, o computador analógico e o computador digital. Um computador pode prover-se de inúmeros atributos, dentre eles armazenamento de dados, processamento de dados, cálculo em grande escala, desenho industrial, tratamento de imagens gráficas, realidade virtual, entretenimento e cultura.
Assumiu-se que os computadores pessoais e laptops são ícones da Era da Informação; e isto é o que muitas pessoas consideram como "computador". Entretanto, atualmente as formas mais comuns de computador em uso são os sistemas embarcados, pequenos dispositivos usados para controlar outros dispositivos, como robôs, câmeras digitais ou brinquedos.

Cliente
Cliente-servidor é um modelo computacional que separa clientes e servidores, sendo interligados entre si geralmente utilizando-se uma rede de computadores. Cada instância de um cliente pode enviar requisições de dado para algum dos servidores conectados e esperar pela resposta. Por sua vez, algum dos servidores disponíveis pode aceitar tais requisições, processá-las e retornar o resultado para o cliente. Apesar do conceito ser aplicado em diversos usos e aplicações, a arquitetura é praticamente a mesma.

Inteligência Artificial
A inteligência artificial (IA) é uma área de pesquisa da ciência da computação dedicada a buscar métodos ou dispositivos computacionais que possuam ou simulem a capacidade humana de resolver problemas, pensar ou, de forma ampla, ser inteligente.

Tecnologia de Informação(TI)
A Tecnologia da Informação é um termo comumente utilizado para designar o conjunto de recursos não humanos dedicados ao armazenamento, processamento e comunicação da informação, bem como o modo de como esses recursos estão organizados num sistema capaz de executar um conjunto de tarefas. A TI não se restringe a equipamentos (hardware), programas (software) e comunicação de dados. Existem tecnologias relativas ao planejamento de informática, ao desenvolvimento de sistemas, ao suporte ao software, aos processos de produção e operação, ao suporte de hardware, etc.
A sigla TI, tecnologia da informação, abrange todas as atividades desenvolvidas na sociedade pelos recursos da informática. É a difusão social da informação em larga escala de transmissão, a partir destes sistemas tecnológicos inteligentes. Seu acesso pode ser domínio público ou privado, na prestação de serviços das mais variadas formas.

Internet
A Internet é um aglomerado de fios intruduzidos no computador pelo o possuidor através deste depois de ter comido picanha com arroz e batatas fritas e de redes em escala mundial de milhões de computadores interligados pelo Protocolo de Internet que permite o acesso a informações e todo tipo de transferência de dados. A Internet é a principal das novas tecnologias de informação e comunicação (NTICs). Ao contrário do que normalmente se pensa, Internet não é sinônimo de World Wide Web. Esta é parte daquela, sendo a World Wide Web, que utiliza hipermídia na formação básica, um dos muitos serviços oferecidos na Internet. De acordo com dados de março de 2007, a Internet é usada por 16,9% da população mundial[1] (em torno de 1,1 bilhão de pessoas).

Programas
Um programa de computador é uma coleção de instruções que descrevem uma tarefa a ser realizada por um computador. O termo pode ser uma referência ao código fonte, escrito em alguma linguagem de programação, ou ao arquivo que contém a forma executável deste código fonte.

Redes de computadores
Uma rede de computadores consiste de 2 ou mais computadores e outros dispositivos ligados entre si e compartilhando dados, impressoras, trocando mensagens (e-mails), etc. Internet é um exemplo de Rede. Existem várias formas e recursos de vários equipamentos que podem ser interligados e compartilhados, mediante meios de acesso, protocolos e requisitos de segurança.

Segurança da informação
Segurança de Informação está relacionada com métodos de proteção aplicados sobre um conjunto de dados no sentido de preservar o valor que possui para um indivíduo ou uma organização. São características básicas da segurança da informação os aspectos de confidencialidade, integridade e disponibilidade, não estando restritos somente a sistemas computacionais, informações eletrônicas ou sistemas de armazenamento. O conceito se aplica a todos os aspectos de proteção de informações e dados.

Hardware
O hardware, material ou ferramental é a parte física do computador, ou seja, é o conjunto de componentes eletrônicos, circuitos integrados e placas, que se comunicam através de barramentos. Em contraposição ao hardware, o software é a parte lógica, ou seja, o conjunto de instruções e dados processado pelos circuitos eletrônicos do hardware. Toda interacção dos usuários de computadores modernos é realizada através do software, que é a camada, colocada sobre o hardware, que transforma o computador em algo útil para o ser humano.
O termo "hardware" não se refere apenas aos computadores pessoais, mas também aos equipamentos embarcados em produtos que necessitam de processamento computacional, como o dispositivos encontrados em equipamentos hospitalares, automóveis, aparelhos celulares (em Portugal portáteis), entre outros.
Informática médica
Informática Médica, segundo Blois & Shortliffe, é o campo de estudo relacionado à vasta gama de recursos que podem ser aplicados no gerenciamento e utilização da informação biomédica, incluindo a computação médica e o próprio estudo da natureza da informação médica.

Exclusão digital
A exclusão digital é um conceito dos campos teóricos da comunicação, sociologia, tecnologia da informação, História e outras humanidades, que diz respeito às extensas camadas das sociedades que ficaram à margem do fenômeno da sociedade da informação e da expansão das redes digitais.
No Brasil, o termo "exclusão digital" é mais usado para se referir ao problema, indicando o lado dos excluídos, enquanto em outros idiomas os termos equivalentes a "brecha digital" ou "fissura digital" são preferidos (como no inglês digital divide e o francês fracture numérique). Os dois termos, porém, não são sinônimos perfeitos, pois enquanto "exclusão digital" se refere apenas a um dos lados da questão, "brecha digital" faz referência à própria diferença entre excluídos e incluídos.

Telessaúde
Telessaúde é a promoção de saúde, relacionada a serviços de informação, através de tecnologias de telecomunicações. Podendo ser simples, como dois profissionais de saúde discutindo um caso por telefone, ou mais sofisticada com uso de redes de vídeo e web-conferências e até o uso da robótica.
O atendimento em saúde depende da troca de informações sobre o paciente, daí vem a possibilidade de uso de ferramentas para ampliar os horizontes dessa rotina, alterando paradigmas.

SAC Virtual
Serviço de Atendimento ao Consumidor, feito via internet ou sem contato humano.

Virtualização
Há muitas concepções de virtual. Algumas das definições mais comuns são estas:
Algo que é apenas potencial ainda não realizado (a definição histórica). Virtual referir-se-ia a uma categoria tão verdadeira como a real. O virtual não seria oposto ao real. O virtual pode ser oposto ao atual, porque o virtual carrega uma potência de ser, enquanto o atual já é (ser).
Algo que não é físico, apenas conceitual.
Algo que não é concreto. Virtual é tudo aquilo que não é palpável, i. e., geralmente alguma abstração de algo real.
A simulação de algo, como em Realidade Virtual, Memória virtual, Disco virtual.

Software
V. Programas

Analógico
Sinal analógico é um tipo de sinal contínuo que varia em função do tempo. Um velocímetro analógico de ponteiros, um termômetro analógico de mercúrio, uma balança analógica de molas, são exemplos de sinais lidos de forma direta sem passar por qualquer decodificação complexa, pois as variáveis são observadas diretamente. Para entender o termo analógico, é útil contrastá-lo com o termo digital.
Na eletrônica digital, a informação foi convertida para bits, enquanto na eletrônica analógica a informação é tratada sem essa conversão. Um exemplo de sinal analógico é o disco de vinil.
O instrumento analógico consiste num painel com uma escala e um ponteiro que desliza de forma a se verificar a posição deste sobre aquela. Num galvanômetro, por exemplo, a deflexão do ponteiro sobre uma escala fornece a leitura direta de grandezas físicas, como tensão elétrica, ou força eletromotriz, intensidade de corrente elétrica, resistência elétrica, entre outras.

Tipos de impressão
Quando um projeto gráfico deve ser impresso em uma impressora comercial, será muito importante definir, antes mesmo do início do projeto enquanto arquivo digital, qual será o sistema de impressão e o tipo de papel em que esse projeto será impresso.
Não só por questões de orçamentos, mas também por questões intimamente ligadas à estrutura interna do arquivo. Para discutir estas questões procure a gráfica de sua preferência e exponha as características principais do projeto (tiragem, tamanho final, número de cores, etc.), para que ela possa auxiliá-lo numa escolha mais adequada do sistema de impressão e tipo de papel.
Uma impressora ou dispositivo de impressão é um periférico que, quando conectado a um computador ou a uma rede de computadores, tem a função de dispositivo de saída, imprimindo textos, gráficos ou qualquer outro resultado de uma aplicação.
Herdando a tecnologia das máquinas-de-escrever, as impressoras sofreram drásticas mutações ao longo dos tempos. Também com o evoluir da computação gráfica, as impressoras foram-se especializando a cada uma das vertentes. Assim, encontram-se impressoras optimizadas para desenho vectorial e para raster, e outras optimizadas para texto.
A tecnologia de impressão foi incluída em vários sistemas de comunicação, como o fax.

 

 

Informática para Radiologia (continuação - parte 2)

Radiologia Digital
Há algum tempo a radiologia vem evoluindo a passos largos. Entre as maiores diferenças entre as imagens geradas de forma analógica e as imagens digitais está a qualidade final da imagem, contudo, as mudanças são tantas e o impacto dessa mudança é tão grande que não teríamos oportunidade de discutí-las aqui. Assim, vamos colocar apenas os tópicos principais das tecnologias envolvidas na radiologia digital.
Pixel
Voxel
Radiologia Digital é um ramo relativamente novo que traduz a tendência do mundo moderno de utilizar o computador para resolver problemas que envolvam repetições e cálculos.
Para entender isso, devemos compreender que a imagem digital nada mais é que uma representação numérica de uma imagem real, ou seja, ao invés de átomos para formar a imagem temos pixels e voxels.
Pixel é o menor ponto bidimensional de uma imagem, enquanto Voxel é o menor ponto tridimensional de uma imagem digital.
O processo de digitalização de uma imagem, isto é, a conversão de uma imagem do mundo contínuo (físico, real) para o mundo discreto (digital) é feito através de alguns cálculos matemáticos, em que se informa ao computador onde cada parte daquela imagem existe e o computador representa esta parte através de pixels.
  • As vantagens de se utilizar imagens digitais ao invés de imagens analógicas são muitas, dentre elas:
    - Diminuição da quantidade de filmes;
    - Menor tempo de exposição (cliente e técnico) por conta de menos repetições do mesmo exame;
    - Descentralização e mobilidade, isto é, o centro de radiologia pode ser em um lugar,enquanto o centro de diagnóstico em outro e/ou, o médico pode laudar em um terceiro lugar.
Gerenciamento de Imagens e Informação

No manejo de informação dentro do hospital por meio de uma rede de computadores, surgiu inicialmente o conceito de Sistemas de Informação Radiológica - RIS (Radiology Information Systems) e que demonstraram que é possível utilizar sistemas computadorizados para melhorar o gerenciamento dos pacientes, a geração e distribuição de relatórios, as facilidades de utilização dos recursos disponíveis, a localização dos filmes, e as rotinas de funcionamento do setor de radiologia.
Freqüentemente eles são integrados ao Sistema de Informação Hospitalar (HIS - Hospital Information Systems). Como o RIS faz tudo menos trabalhar com as próprias imagens, na década dos 80 este conceito foi ampliado para incluir o que chamamos de PACS (Picture Archiving and Communication System, ou sistemas de arquivamento e comunicação de imagens). É um sistema que permite, como o nome diz, a armazenagem e recuperação das imagens em uma rede de computadores.

Telemedicina = Medicina à distância.

Engloba telerradiologia, telecardiologia, teleneurologia, telepediatria, etc.
Permite acesso aos laudos/exames em qualquer lugar com web e a troca de informações entre especialistas em diferentes locais físicos;
Tem o objetivo de ampliar a prestação de serviços médicos (atender a pequenas clinicas/hospitais) e dar acesso a informações médicas longe dos centros urbanos;
Além disso, objetiva uma medicina mais distribuída, popular e barata, a internacionalização da informação médica conforme padrões HL7/DICOM, especificados pela OMS (Organização Mundial de Saúde).
Abaixo um esquema de funcionamento da telemedicina. Ele funciona através de uma rede de computadores interligada internamente no hospital (LAN) e a internet.

HL7 = HEALTH LEVEL SEVEN = PADRÃO PARA O INTERCÂMBIO ELETRÔNICO DE DADOS ENTRE SISTEMAS DE INFORMAÇÃO EM SAÚDE.
O HL7 é uma organização que desenvolve normas na área de saúde;
L7 = é o mais alto nível para a classificação de organizações internacionais que trabalham no desenvolvimento de padrões técnicos;
As normas garantem a troca, o gerenciamento e a integração das informações na área de saúde;
Permite a criação de uma rede integrada de saúde, como especificado pelo projeto da OMS (Organização Mundial de Saúde);
Define regras e procedimentos de segurança, acessibilidade, comunicação, armazenamento e estruturação da informação médica/saúde;

DICOM = SISTEMA DE COMUNICAÇÃO E IMAGEM DIGITAL EM MEDICINA (DIGITAL IMAGING AND COMMUNICATIONS IN MEDICINE)
É um conjunto de normas técnicas que padronizam fabricantes e usuários de equipamentos de imagens médicas (CT, RM, US, etc);
Garante a comunicação integrada, permitindo que a informação médica (imagens digitais) esteja inserida em uma rede internacional de comunicação médica, ou seja, garante que um mesmo exame visto em qualquer ponto do planeta seja visualizado exatamente da mesma forma (previne diagnósticos errados ou duplos por conta de equipamentos diferentes).

HIS

PACS = SISTEMA DE ARQUIVAMENTO E COMUNICAÇÃO DE IMAGENS (Picture Archiving and Communication System).
Consiste na especificação de uma rede, abrangendo software e hardware, responsável pela a aquisição, o armazenamento e a visualização de imagens médicas digitais.

Otimizar o procedimento de diagnóstico médico.
Acesso remoto (intranet/internet), em tempo real, a imagens de CT (tomografia computadorizada), CR (Raio-x computadoizado), RM (ressonância magnética), US (Ultra-sonografia), e outras;
Eliminar os altos custos com os tradicionais filmes radiológicos impressos.

 

Informática para Radiologia parte I.

Hoje, a maior dificuldade que a maioria dos indivíduos enfrenta quando senta-se ao computador é: “Será que isso é realmente necessário?”. A resposta é: Sim e não.
Sim, pois a maior função do computador é facilitar a vida de quem o utiliza. Não porque isso fará com que você tenha de se acostumar com uma ferramenta nova e em constante evolução. Mas isso não é tão ruim afinal, não é?!
Na área da saúde, em especial na radiologia, a tecnologia tem a função de melhorar o desempenho de um determinado aparelho, fazendo-o gerar resultados em menos tempo e de forma mais confiável.
O impacto disso é que o cliente tem menos tempo de exposição a elementos radioativos, menos desconforto pelo tempo que passa no aparelho, entre outras vantagens que veremos mais adiante. Para o radiologista, os benefícios também são muitos, desde menor tempo para cada exame, passando por melhorias na qualidade da imagem, até auxílio por computador através de inteligência artificial.
Enfim, as vantagens do uso da tecnologia de informação(T.I) são enormes, quer no nosso dia-a-dia (através do uso da internet, de programas com diversas utilidades que alcançam tarefas simples como escrever uma carta, até mesmo controlar quanto dinheiro você tem no banco.) Mas as vantagens da T.I. não param por aí; na área profissional do técnico em radiologia está em todas as frentes de trabalho: Desde o atendimento do cliente na recepção do hospital, passando pelo sistema financeiro/contabilidade, pelos outros sistemas/ setores do hospital (Cardiologia, UTI, Pronto Socorro, Enfermaria, Radiologia, etc.) até estar disponível na internet para, por exemplo, o plano de saúde ou o médico particular do cliente possam acompanhá-lo.
A frente de trabalho do Radiologista trará enormes quantidades de desafios na área de tecnologia, assim sendo, é muito importante que o profissional que quer se manter no mercado de trabalho evolua junto com as tecnologias e procure aprendê-las e conviver com elas o máximo possível.
Algumas tecnologias que fazem parte do conjunto de conhecimentos mínimos que o Radiologista deve possuir para entender o rumo das tecnologias atualmente existentes e, inclusive, poder utilizá-las de forma total – leia-se, adaptar-se às situações do presente e do futuro da profissão – são:
Uma boa noção de redes de computadores, o que fará com que o Radiologista compreenda como as informações trafegam na rede, isto é, que caminhos os dados que estão armazenados num computador estarão disponíveis para outras pessoas, assim, este profissional será capaz de entender a fundo as questões de segurança de informação que sua profissão o sujeita, ou seja, a responsabilidade de lidar com informações pessoais e confidenciais estará segura.
Uma noção segura de programas e hardware, suficientes para operar os aparelhos que forem necessários para exercer sua profissão.
Uma idéia das tecnologias da área da informática médica, incluindo as tecnologias atuais e os projetos existentes para o futuro.
Assim, o maior objetivo desse material é conscientizar o técnico para um futuro de inovações tecnológicas constantes.
Entendendo a informática
Não espanta que cada vez mais utilizemos a informática – e as ferramentas que ela possui – no dia-a-dia. E, não seria ousadia dizer que em alguns anos o analfabetismo virtual (conhecido também como exclusão digital) será o maior responsável pelo desemprego e marginalidade.
Tarefas simples, como mandar cartas, saber das notícias e ver TV mudaram dramaticamente em alguns poucos anos. Sabe por que? Por causa da informática e, em especial, uma tecnologia: A Internet .
Na área de saúde, não é diferente: Nunca se obteve tantas informações com tanta facilidade e o efeito disso é que o profissional de saúde tem necessidade de estar cada dia mais atualizado com as tecnologias ou estará condenado a ser excluído do mercado de trabalho. Tecnologias como telessaúde, SAC Virtual e virtualização já são práticas muito comuns no mercado que, ao contrário do que parece, cresce mais a cada dia, ou seja, há vagas, mas para profissionais que saibam lidar com essas tecnologias.
E é aí que entra você: Profissional que está interessado em se atualizar, se aperfeiçoar – ora, se você agüentou esta parte de informática até aqui, é sinal que você possui muita força de vontade (;-)
Devemos compreender que informática é a ciência que visa o tratamento de informações através do uso de equipamentos(hardware) e procedimentos (software) da área de processamento de dados, ou seja, é o tratamento da informação.
O mundo moderno é movido a informação e, quanto mais informação, mais capaz de emitir posicionamentos precisos é um profissional. A palavra chave em informática é convergência, ou seja, a capacidade de colocar cada vez mais funcionalidades num mesmo aparelho. Veja o exemplo dos telefones celulares: O que era um dispositivo de comunicação analógico, agora é capaz de comunicar-se com outros celulares através de mensagens de textos, através de ondas invisíveis chamadas bluetooth e/ou Infravermelho; é capaz de tirar fotos, reproduzir música, etc.
Assim, a tendência é que cada vez se tenha mais funções em um aparelho cada vez mais simples. Melhorando essa concepção, podemos afirmar que o computador ideal deve ser intuitivo como uma televisão ou um aparelho telefônico convencional, o que hoje ainda não acontece mas é o caminho que está sendo trilhado.

Conhecimentos prévios
É pergunta comum do Radiologista: ‘Que conhecimentos eu devo ter para utilizar informática?’. A resposta é: Todos e nenhum. Explico.
Por ser disciplina bastante complexa, compreender todas as partes da informática é virtualmente impossível, mas se a pergunta for relacionada à utilização de equipamentos específicos, torna-se menos difícil. Tentaremos ver abaixo alguns dos conhecimentos básicos que o radiologista deve ter para utilizar apropriadamente da ferramenta informática.
Note-se que não é uma questão de saber como um determinado modelo de equipamento de uma marca específica funciona, mas a generalidade. Por exemplo, independentemente da marca de um rádio, todos sabem operá-lo, mas há funções específicas que cada marca e modelo têm. Nesse caso é necessário um treinamento específico, mas se já compreendemos o princípio geral de funcionamento, fica bem mais fácil entender os detalhes específicos.

1 – Conhecimentos básicos sobre hardware e seu funcionamento
É importantíssimo que o profissional saiba utilizar as peças ou hardware, de forma apropriada.
Compreender, mesmo que genericamente, quais são as peças que constituem o computador podem ajudá-lo em diversas coisas, por exemplo, se o profissional sabe que uma determinada peça é obsoleta ou está quebrada fica bem mais fácil para relatar esta situação para o setor de engenharia ou informática, inclusive, apontando melhorias indicadas pelo fabricante ou baseado em sua experiência.
Mais ainda: Ao imprimir um documento, é recomendado o mesmo tipo de impressão que para uma imagem radiográfica?
E como funciona uma mesa digitalizadora?
Todas essas perguntas e outras mais podem ser respondidas de forma simples através de um conhecimento mínimo sobre o hardware, por exemplo, em relação à impressão, o recomendado é que para impressões de imagens radiográficas seja utilizada impressão a cera, enquanto que para a impressão de textos pode-se utilizar impressoras matriciais.
E, em relação à mesa digitalizadora, esta tem a mesma funcionalidade de um scanner?
Enfim, são muitas as coisas a serem observadas no tocante a hardware, mas todas muito comuns se o utilizador tiver alguma vivência com informática no seu dia-a-dia.
Outra dica é manter-se atualizado, através da própria internet ou de cadernos de informática de jornais e revistas, sobre o que acontece no tocante às mudanças na informática e tecnologia em geral.
Recomenda-se ainda que o utilizador seja capaz, mesmo que minimamente, de identificar as principais peças de um computador. Elas estão divididas em grupos:
Dispositivos de entrada – peças que introduzem informações no computador. Ex.: Scanner, teclado, microfone...
Dispositivos de saída – peças que obtém informações do computador e exibem para o utilizador. Ex.: Monitor, caixas de som, impressoras...
Dispositivos de entrada e saída – peças que, ao mesmo tempo, obtém e introduzem informações no computador. Ex.: Monitor touch screen, headset, impressoras multifuncionais...
Dispositivos de armazenamento – peças que armazenam informações para serem utilizadas. Ex.: Pen Drives, HD, DVDS.
É importante dizer que muitos autores costumam englobar os dispositivos de armazenamento nos dispositivos de entrada e saída.
Dispositivos de Processamento – peças que servem para processar as informações que entram e saem do computador. Ex.: Procesador, memória RAM e memória ROM.
Dessa forma, é possível analisar quase qualquer produto tecnológico e classificá-lo. Por exemplo, vejamos o caso de um celular.
Dispositivos de entrada: Microfone, câmera, teclado alfanumérico...
Dispositivos de saída: Tela, saída de som, módulo vibrador...
Dispositivos de entrada e saída: Headset, antena...
Dispositivos de armazenamento: Memória interna, cartão de memória externa...
Dispositivos de processamento: Processador, memória RAM e memória ROM.

Conclui-se que é possível classificar quase todos os equipamentos digitais eletrônicos partindo dos princípios acima descritos.

2 – Conhecimentos sobre software
Sistema operacional é o principal programa de um computador. É ele que fará com que todos os programas ‘entendam’ o que o usuário quer e o que as peças são capazes, em outras palavras, é ele que fará com que você interaja com um programa e, por sua vez, com o computador. Ex.: Ao pressionar uma tecla no mouse, o usuário pede que uma determinada ação seja feita, mas é o sistema operacional que detectará o mouse e o que ele faz, inclusive, dizendo aos programas para que serve “clicar” no mouse.
Os programas têm diversas funções. E são divididos em grupos:
  1. – Sistemas operacionais – programas que têm a função de interpretar os comandos do usuário para o computador e vice-versa. Ex.: Ms-Windows, Linux, DOS...
    2 – Softwares Aplicativos – Ou também chamados aplicativos, são programas que têm a função definida, ou seja, executam tarefas específicas. Ex.: Editores de texto, planilhas de cálculos, editores de imagem...
    3 – Softwares Utilitários – São programas que ajudam outros programas a funcionar, isto é, são subprogramas: Programas dentro de programas. Eles têm funções complementares aos aplicativos. Ex.: Calculadora do Windows, Bloco de notas, Calculadora dentro do programa do Imposto de renda...

sábado, 25 de dezembro de 2010

CÁLCULO DA TÉCNICA RADIOLÓGICA

OS FATORES FORMADORES DA TÉCNICA RADIOLÓGICA E O CÁLCULO DA TÉCNICA RADIOLÓGICA.

GENERALIDADES:
Para se obter uma boa imagem no filme radiográfico, além de um bom posicionamento do paciente ou estrutura a ser radiografada, devemos saber utilizar corretamente os “Fatores radiográficos ou elementos formadores da TECNICA” utilizada para determinado caso, de forma equilibrada e que esteja dentro dos padrões de segurança e tolerância do organismo. Tais elementos são : o kV (Quilovolt), a mA (mili amperagem), o t (tempo de exposição em seg.), a “D” (distância em cm) e a constante do aparelho (K). Existem também outros fatores, como por exemplo: o uso ou não de grades, o tipo de Écran (grão fino, médio ou grosso), o EFEITO ANÓDICO e as condições do químico usado para a revelação do filme.



Painel ou mesa de comando mostrando os fatores radiográ ficos, botões seletores de voltagem e bucky, de preparo e disparo, Leds indicadores e Agulhas com escala de leitura.

*O QUE SIGNIFICA :

A) A tensão (kV): Fator radiográfico que representa a qualidade dos raios-x, sendo também responsável pelo poder de penetração dos raios-x e pelos contrastes intermediários entre o PRETO e o BRANCO (tons de Cinza). OBS: Quanto mais kV empregado, maior será o poder de penetração, ou seja, nos exames de maior espessura a radiação secundária produzida é proporcional a quilovoltagem empregada.

OUTRAS CONSIDERAÇÕES SOBRE KV.

O KV está relacionado com a energia do feixe de raios-x;
Quanto maior o valor do KV aplicado, maior será a força de penetração dos fótons;
Em grande parte dos aparelhos de raios-x os valores de KV estão disponíveis em uma escala que varia entre 40 e 120KV;
O KV é o principal fator de controle da imagem.
Outra expressão usada para o cálculo do KV, descrita em algumas literaturas é:
ESP x 2 + CA=KV, onde:
ESP = espessura da área em cm;
CA = Constante do Aparelho;
KV = o que se quer saber.

Como calcular o kV? – Através da fórmula:
kV = 2 x e + K, onde:

kV é a quilovoltagem que se deseja, multiplica-se a “e” (espessura) por 2 e soma-se com a “K” (constante do aparelho).

EX: kV = ?
e = 20 cm, K = 30
kV = 2 x e + K
kV = 2 x 20 + 30
kV = 40 + 30
Resposta: kV = 70.

OBS: para encontrar a espessura da região a ser radiografada “e”, utilizamos um instrumento denominado “ESPESSÔMETRO”, que nada mais é que um tipo de régua ou escala graduada em “cm”. Caso não disponha deste instrumento, utilize uma fita ou régua para obter a medida.

B) A corrente mAs: Fator radiográfico que representa a quantidade de raios-x, sendo também responsável pelos contrastes fortes (PRETO e BRANCO). Essa quantidade depende do Tempo usado, pois o aumento de um pode ser compensado com a diminuição do outro, daí o termo mAs (mA x tempo). O mA depende do aquecimento fornecido ao CATÓDIO (-), pois quanto maior for o aquecimento, maior será a quantidade de elétrons flutuando sobre o catódio, ou seja, maior será a nuvem eletrônica que será projetada para a superfície do ANÓDIO, produzindo assim maior quantidade de raios-x.
A corrente não é calculada e sim calibrada na mesa de comando.

OUTRAS CONSIDERAÇÕES SOBRE mAs.

O mAs é o produto (multiplicação) da corrente do tubo (mA) pelo tempo de exposição (t) em segundos;
O mAs define a quantidade de fótons de raios-x aplicados em uma exposição radiográfica;
Quanto maior o mAs, maior a quantidade de fótons de raios-x no feixe e, consequentemente, maior o grau de enegrecimento (densidade) da imagem.
Como calcular o mAs ? – Através da fórmula: mAs = mA x t, onde: 

mAs = é o que se deseja, o mA( miliampére) multiplica-se pelo t (tempo).

EX: mAs = ?
mAs = mA x t
mA = 300 mAs = 300 x 0,5
t = 0,5 s

Resposta : mAs = 150

Outra expressão matemática descritas em algumas literaturas:

mAs / s = mA
mAs / mA = s 

O cálculo do mAs pode ser obtido através da expressão matemática:
KV x CMR = mAs, onde:

CMR = Constante Miliamperimétrica Regional.

A CMR é atribuída aos diferentes tecidos e órgãos do corpo humano.

TECIDOS / ÓRGÃOS: CMR
OSSOS = 1.0
PARTES MOLES = 0.8
PULMÕES = 0.03
 


C) t(s): Fator radiográfico que caracteriza o “Tempo de exposição em segundos”, está intimamente ligado com a mA, pois é o tempo de aquecimento do CATÓDIO (-), lembre-se ! quanto maior for o aquecimento, maior será a quantidade de elétrons produzidos (nuvem eletrônica), ou seja maior será a quantidade de raios-x que é empregada. O tempo (t) é a duração da emissão dos raios-x e deve ser curto nas radiografias de órgãos em movimento, com por exemplo: Coração, intestino (peristalse), pulmões etc.

D) K (CA): Fator radiográfico que caracteriza a constante do aparelho, ou seja, são padrões técnicos dos componentes eletrônicos, de acordo com sua potência (padrões do fabricante). Geralmente, utilizamos um K=30 (de 20~30*)
Como calcular a K ? – Através da fórmula usada para calcular o kV:
kV = 2 x e + K, por exemplo:
K = ?
kV = 80
e = 25 cm
kV = 2 x e + K
80 – 50 = K
80 = 2 . 25 + K
80 = 50 + K

Resposta: K = 30

OBS: Quando a grade usada for da proporção 8:1, a constante do aparelho é = a 30;
Se for de 12:1, a constante será = 40.


grade antidifusora, criada pelo Dr. Gustav Bucky, consiste em um conjunto de finas lâminas de chumbo separadas por um material radiotransparente muito leve e possui a função de absorver radiação espalhada (secundária) originada a partir da interação do feixe de raios-x primário de radiação com a área de interesse / ou parte do corpo do paciente. Deve ser usada quando a quilovoltagem for superior a 70KV.
Existem grades fixas (Dr. Gustav Bucky) e móveis (Dr. Hollis E. Potter e Dr. Gustav Bucky – sistema POTTER-BUCKY).

E) D: fator radiográfico que caracteriza a distância do foco até o filme (DfoFi), ou seja, relaciona-se com a quantidade de raios-x que saindo do foco chega até o objeto.
Essa quantidade é inversamente proporcional ao quadrado da distância e é um fator que não está relacionado diretamente com a mesa de comando.
De acordo com a Lei de Kepler, ao dobrarmos a distância foco-filme (DfoFi), teremos que quadruplicar a intensidade da radiação, para que possamos obter uma radiografia de padrões semelhantes.
Lembre-se, a distância é medida em cm ou m, sendo mais comumente usada a distância de 100 cm ou 1 m.

F) Efeito Anódico: Fenômeno que explica a quantidade a mais de radiação no lado do CATÓDIO (-). Relaciona-se com o ângulo de inclinação do alvo ou pista de choque dos elétrons no ANÓDIO (+). Portanto, o CATÓDIO (-) sempre deve estar voltado para a região de maior densidade, por exemplo:
Em uma radiografia da coluna tóraco-lombar em AP, o CATÓDIO deve estar voltado para a região lombar, radiografia do joelho em AP, o CATÓDIO voltado para o lado da coxa e etc.

OUTRAS CONSIDERAÇÕES:
Efeito Anódico: O efeito anódico descreve um fenômeno em que a intensidade da radiação emitida pelo catodo do emissor de raios X é maior do que a do anodo.
Isso se deve ao fato de o ângulo da face do anodo sofrer grande atenuação ou absorção de raios X pelo terminal do anodo.
Estudos mostram que a diferença de intensidade do catodo para o anodo no feixe de raios X pode variar de 30% a 50%, dependendo do ângulo alvo.
Em geral, quanto menor o ponto focal, maior o efeito anódico.
Observação: Um ângulo anódico mais preciso (menor que 12°) também aumenta o efeito anódico, mas isso é determinado pelo fabricante, e não pelo técnico / tecnólogo / radiologista.

POSICIONAMENTO Vs. INCIDÊNCIA, O QUE DEVEMOS SABER?

Para que possamos realizar um exame radiológico de boa qualidade, não basta calcularmos uma técnica radiológica boa o suficiente para obtermos uma imagem, porém, é de fundamental importância posicionarmos corretamente o paciente ou a estrutura a ser radiografada para que o exame fique dentro dos padrões técnicos exigidos. Portanto, Posicionamento: É o ato de posicionar o corpo ou estrutura de interesse de um paciente na hora do exame. Agora, devemos conhecer um pouco mais sobre as posições do corpo, mas antes, temos algumas Considerações: A palavra decúbito equivale ao ato de estar deitado com as porções Anteriores, posteriores ou laterais do corpo voltadas para a superfície da mesa. Agora, a palavra semidecúbito, significa “meio deitado” (semi = meio / parcialmente; decúbito = deitado), ou seja, o paciente vai estar em uma posição entre deitar de lado e deitar de peito para cima ou de peito para baixo (meio inclinado).
Descrevemos aqui alguns itens importantes sobre as posições para a realização de exames radiológicos:
1) Posição de decúbito dorsal: É o ato de estar deitado com o dorso voltado para a superfície da mesa de exames (de peito para cima).
2) Posição de decúbito ventral: É o ato de estar deitado com o ventre para a superfície da mesa de exames (de peito para baixo).
2) Decúbito lateral: É o ato de estar deitado com a lateral “direita ou esquerda” voltadas para a superfície da mesa de exames. Quando o paciente estiver deitado com o lado esquerdo voltado para o tampo da mesa, dizemos que o mesmo encontra-se em decúbito lateral esquerdo.
4) Semidecúbito ventral “direito ou esquerdo”: É quando o paciente encontra-se com a porção anterior voltada para a superfície da mesa, mas somente com um dos lados encostados.
5) Ortostase: É quando o paciente encontra-se de pé para a realização de determinados exames.
5.A) OAD ou E (Oblíqua Anterior Direita ou Esquerda em Ortostase): é quando o paciente encontra-se de pé e com a porção anterior do corpo voltada para a superfície do bucky, porém com um dos lados (“D” ou “E”) mais encostados no bucky. Na maioria das situações o paciente fica em uma angulação de 45° em relação ao plano do bucky, sendo que em outras, podemos diminuir ou aumentar mais ainda tal angulação, de acordo com o tipo de exame solicitado.
5.B) OPD ou E (Oblíqua Posterior Direita ou Esquerda em ortostase): é quando o paciente encontra-se de pé e com a porção posterior do corpo voltada para a superfície do bucky, porém com um dos lados (“D” ou “E”) mais encostados no bucky.
Incidência: Refere-se a trajetória dos raios-x em relação a determinada porção ou estrutura do corpo do paciente. É muito comum nas literaturas específicas encontrarmos o termo: “Raio Central incidindo perpendicularmente na porção anterior...”.
1) Incidência AP (Antero-posterior): É quando o Raio Central incide primeiramente na porção Anterior do corpo ou área a ser radiografada, saindo na porção Posterior do mesmo.
2) Incidência PA (Póstero-anterior): É quando o Raio central incide primeiramente na porção posterior do corpo ou área a ser radiografada, saindo na porção Anterior do mesmo.
3) Incidência AP ou PA com Raio Central perpendicular: É quando o Raio Central (RC) faz uma angulação de 90° com a superfície do tampo da mesa ou do bucky de parede.
4) Incidência AP ou PA com Raio central com angulação Cefálica: É quando o Raio Central está direcionado para a porção mais superior do corpo ou estrutura a ser radiografada.
5) Incidência AP ou PA com Raio central com angulação Podálica ou Caudal: É quando o Raio Central está direcionado para a porção mais baixa do corpo ou estrutura a ser radiografada.



Outros termos usados em posicionamento radiológico.


A) Decúbito dorsal em Trendelenburg: Posição na qual o paciente fica com a cabeça em um plano mais baixo em relação aos pés, devido a inclinação da mesa de exames, sendo utilizada algumas vezes nos exames de Urografia intravenosa e TGI-ALTO (estômago e duodeno).
B) Decúbito dorsal na posição de FOWLER: Descreve o inverso da posição de Trendelenburg, ou seja, desta vez o paciente vai estar com a cabeça em um nível mais alto em relação aos pés, devido a inclinação da mesa.
C) Posição de SIM: Paciente em Semidecúbito ventral, com a perna do lado encostado na mesa esticada e a outra com o joelho fletido. Tal posição está indicada para o procedimento de aplicação de meio de contraste nos exames de ENEMA BARITADO, por exemplo.
D) Posição ginecológica: Paciente em decúbito dorsal, quadris abduzidos, joelhos fletidos e colocados sobre um apóio. Geralmente usada nos exames ginecológicos e nos exames de HISTEROSSALPINGOGRAFIA, por exemplo.

momento informativo(curso)em Alagoas.Realização janeiro de 2011.

Estão abertas as inscrições para o Curso de Anatomia Radiológica e Princípios em posicionamento ( Crânio , Face e Coluna vertebral.Saiba mais através do site www.diferencialcursos.com.br
 AULAS TEÓRICAS E PRÁTICAS.

Oi queridos vamos interagir?Questões de física.

1) Qual o componente encontrado no fixador e no revelador?

a) Hipossulfito de sódio
b)Hidroquinona
c)Sulfito de Sódio
d)Brometo de Potássio
e) Alúmen de cromo
vamos compartilhar de nossos conhecimentos com o objetivos ajudar a esclarecer as dúvidas de nossos colegas  estudantes e concurseiros.
OI queridos a resposta é:sulfito de sódio.